
 article
excerpted

from:

SUSHI ImplementatIon:
tHe ClIent and Server
experIenCeS

extendIng and
promotIng tHe USe
of openUrl

dedICated to
StandardS

eStablISHIng SUggeSted
praCtICeS regardIng

SIngle SIgn-on

S P EC I A L E D I T I O N : Y E A R I N R E V I E W A N D STAT E O F T H E STA N DA R DS

information
StandardS Quarterly
Winter 2011 | VOL 23 | ISSUE 1 | ISSN 1041-0031

In 2008, COUNTER issued Release 3 of the Code of Practice
for Journals and Databases. New to the release was the
requirement to support SUSHI in order to be considered
compliant. This further added to the impetus of implementing
SUSHI. Currently 34 publishers or aggregators are listed
on the SUSHI Server Registry. The registry is one of many
implementation aids that have been developed by the SUSHI
Standing Committee and the SUSHI Developer community
and posted to the SUSHI website.

Two implementers of SUSHI, one for the client side and
one for the server side, have shared their experiences in
implementing SUSHI in their organizations in the following
articles. Neither developer had any previous experience
in working with web services, but with the help of the
SUSHI Developer community they both created successful
implementations with only a few headaches along the way.

SuShI
ImplementatIon
e x p e r I e n C e S

In 2007, nISo published the Standardized Usage Statistics Harvesting Initiative (SUSHI) Protocol
(anSI/nISo Z39.93), which defines an automated request and response model for the harvesting
of electronic resource usage data utilizing a web services framework. It was developed to replace

the time-consuming, user-mediated collection of usage data reports. CoUnter reports are the
main type of usage data that is being harvested with SUSHI. Use of CoUnter with SUSHI requires
that the reports be in xml format, which further enables the automation of importing this data into
an electronic resource management (erm) system.

Ip[In praCtICe]

clIent
(page 18)

Server
(page 20)

vS.

c o n t I n u e d »

Information Standards Quarterly | WInter 2011 | vol 23 | ISSUe 1 | ISSn 1041-0031

Ip 17

I work in a mexican company named grupo Integra, which among other activities develops web
systems for libraries. one of these systems called Kenvo Stats generates statistics on the usage of

electronic resources and we added a module to this system to retrieve the CoUnter report statistics
with a SUSHI client. I was in charge of developing that client. I had to learn about some new technology
areas and experienced some trial and error, but ultimately developed the SUSHI client we needed.

I began to follow the SUSHI project two years earlier because
we were very interested in the automation that SUSHI could
provide. Then it suddenly became an urgent priority to
implement a SUSHI client because some of our customers
that already had our system wanted to have a SUSHI client to
facilitate their work. We knew that it would also be important
to attract new customers.

The first challenge I faced in my path to develop the client
was that I had to learn about web services since I had never
used them. So I started to read about them until I understood
the basics. I then met another obstacle: the system in which
the SUSHI client should be implemented is developed in PHP

and in the SUSHI documentation, I only found examples of
clients developed in ASP.Net and Java. I started doing tests
with these clients to better understand how they work, and
then I searched for PHP tools to help me make the client
work in PHP. This required PHP SOAP requests and process
responses, so I tried the PHP SOAP extension, a SOAP toolkit
for PHP called NuSOAP, and the PEAR SOAP-Package.

With a couple of tools I found, I succeeded in making
requests to the test server of Project Euclid and got a correct
response! I needed my SUSHI client to work with several
suppliers, so I got information to connect to more SUSHI
servers and I conducted the same testing using the same PHP

omar
villa

SUSHI Implementation:
the clIent SIde
experIence
o m a r v I l l a

a publication of the national Information Standards organization (nISo)

 18 18

tools. Unfortunately, I didn’t get all positive results; there
were some servers that I could not successfully communicate
with using the PHP tools.

After my failure with PHP tools, I opted for developing
the client in Java. I planned to then make this tool
communicate to our statistical system created in PHP. Since
my knowledge of Java was fairly basic, I knew this would be a
challenge and probably take me a long time. Even so, I began
to develop the client in Java, based on a toolkit made available
by the University of Pennsylvania and posted on the SUSHI
website. In working with this toolkit, I got more familiar
with web services and that gave me a new idea about how to
make the client work with PHP, but this time without using
third party tools to make SOAP requests. I decided to create
my own class in PHP and make the requests using Sockets. It
didn’t took me long time to figure out which headers I needed
to correctly make a SUSHI request and thanks to the PHP
functions, it was much easier for me to process the
XML response.

Creating the client with PHP Sockets gave me greater
flexibility to deal properly with the differences between
SUSHI servers, as there are some that require authentication
to send special headers. With the changes I implemented, my
SUSHI client became fully interoperable.

When it came time to process the server responses,
I realized that the XML responses had some variations,
especially in the ReportItems node. Some servers send a
ReportItems node for each ItemPerformance node; others
put together multiple ItemPerformance nodes on a single
ReportItems node. In some cases when the Count node value
was zero, the ReportItems node was ignored, but in the same
case with other servers, the node was included. Some servers
shipped multiple Customer nodes in the same response; that
is useful as it serves to collect statistics independently of each
area of the institution to which statistics are retrieved. The
variations I encountered complicated the processing of the
responses and is something other implementers should note if
getting data from different SUSHI servers.

Since I started tackling the SUSHI project I had many
questions and sometimes I asked for help through the SUSHI
Develepers list, and this enabled me to better understand
several things. For example, during the development process
I was uncertain how to make a request to the ProQuest server
and I returned to seek help through the list, where I was

told the key to making the request. The problem was that I
needed to send some additional headers for authentication.

Currently our SUSHI client is successfully retrieving
the COUNTER reports JR1, DB1, and DB3 from EBSCOhost,
ProQuest, ACS Publications, and ISI Web of Knowledge
servers. Having a module of a SUSHI Client has helped us to
make our system more attractive for new customers and has
saved much time and effort for them to obtain their statistics.
Soon we will extend our support to add more providers and
additional COUNTER reports.

I want to thank all those who have made the SUSHI
project possible and especially to Oliver Pesch who helped
me so much. I Ip I doi: 10.3789/isqv23n1.2011.04

omar vIlla acoSta <ovilla@gpo-integra.com> is It development
manager at grupo Integra <www.gpo-integra.com> in mexico City, mexico.

Currently our SUSHI client is
successfully retrieving the COUNTER

reports JR1, DB1, and DB3 from
EBSCOhost, ProQuest, ACS Publications,

and ISI Web of Knowledge servers.
Having a module of a SUSHI Client has

helped us to make our system more
attractive for new customers

S e r v e r S I d e e x p e r I e n c e »

Information Standards Quarterly | WInter 2011 | vol 23 | ISSUe 1 | ISSn 1041-0031

Ip 19

